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Abstract: Accurate diagnosis of various lesions in the formation stage of gastric cancer is an
important problem for doctors. Automatic diagnosis tools based on deep learning can help
doctors improve the accuracy of gastric lesion diagnosis. Most of the existing deep learning-based
methods have been used to detect a limited number of lesions in the formation stage of gastric
cancer, and the classification accuracy needs to be improved. To this end, this study proposed an
attention mechanism feature fusion deep learning model with only 14 million (M) parameters.
Based on that model, the automatic classification of a wide range of lesions covering the stage
of gastric cancer formation was investigated, including non-neoplasm(including gastritis and
intestinal metaplasia), low-grade intraepithelial neoplasia, and early gastric cancer (including
high-grade intraepithelial neoplasia and early gastric cancer). 4455 magnification endoscopy
with narrow-band imaging(ME-NBI) images from 1188 patients were collected to train and test
the proposed method. The results of the test dataset showed that compared with the advanced
gastric lesions classification method with the best performance (overall accuracy= 94.3%,
parameters= 23.9 M), the proposed method achieved both higher overall accuracy and a relatively
lightweight model (overall accuracy =95.6%, parameter= 14 M). The accuracy, sensitivity, and
specificity of low-grade intraepithelial neoplasia were 94.5%, 93.0%, and 96.5%, respectively,
achieving state-of-the-art classification performance. In conclusion, our method has demonstrated
its potential in diagnosing various lesions at the stage of gastric cancer formation.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Gastric cancer (GC) is the fourth leading cause of cancer-related deaths and the fifth most
common cancer worldwide. It is reported that 770,000 deaths and 1.09 million (M) new cases
of GC occurred worldwide in 2020 [1]. Some studies have shown that the prognosis of GC
patients is closely related to the pathological stage, and the 5-year survival rate of patients
with early gastric cancer(EGC) is over 90% [2], while the 5-year survival rate of patients with
advanced gastric cancer(AGC) is only about 20% [3,4]. Notably, EGC develops from a series of
precancerous lesions (gastritis, intestinal metaplasia (IM), low-grade intraepithelial neoplasia
(LGIN), and high-grade intraepithelial neoplasia (HGIN)), and the more progressive the lesions,
the higher the risk of patients developing EGC [5]. It is estimated that patients with IM and
patients with LGIN are 10 and 25 times more likely to develop EGC than normal subjects,
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respectively [5–7]. Therefore, timely detection and accurate diagnosis of EGC and precancerous
lesions can significantly reduce the mortality and incidence of EGC, which has become an urgent
need for patients.

Magnification endoscopy with narrow-band imaging (ME-NBI) allows detailed observation
of the morphological features of the gastric mucosal surface microstructure and has become
the primary tool for the clinical examination of gastric mucosal lesions [8–11]. However,
ME-NBI-based endoscopy still has some problems to solve. First, the features of gastric ME-NBI
lesion images are complex, and magnification operation further affects the observation of features,
making accurate diagnosis difficult even for experienced endoscopists [12,13]. Second, manual
diagnosis of endoscopic images is labor-intensive, and the fatigue and lack of endoscopists may
easily lead to diagnostic errors or missed diagnoses [14]. Therefore, the automated diagnosis of
gastroscopic lesion images will bring tremendous clinical benefits, providing endoscopists with
objective lesion assessment and helping them improve the accuracy and efficiency of diagnosing
gastric lesions [15–19].

Machine learning techniques have advanced the state-of-the-art automatic detection of gas-
trointestinal endoscopic images in the past few years. Kanesaka et al [17]. proposed a method to
classify gastric and non-gastric cancer based on gray-level covariance matrix (GLCM) features
and eigenvector coefficient of variation extracted from ME-NBI images and obtained a accuracy
of 96.3%. Van et al [20]. used a pre-trained support vector machine (SVM) and utilized
high-definition endoscopic images’ local texture and color features to classify early esophageal
and non-early esophageal cancer with a system recall of 95.0%. Li et al [21]. used a uniform
color local binary pattern algorithm to extract canonical color patterns from capsule endoscopy
images and used the random forest (RF) to classify normal or diseased images with an accuracy of
over 98.0%. However, these classification methods are highly dependent on the features defined
by experts and cannot fit the diversity of features in reality, thus making it difficult to be extended
to practical clinical.

Deep learning(DL) has recently been widely used in tasks such as automatic classification,
segmentation, and localization of medical images [22–30]. Compared with traditional machine
learning methods such as random forests and support vector machines, deep learning can
automatically capture features in images with better flexibility and accuracy. Several scholars
have demonstrated the applicability of deep learning in the automatic analysis of endoscopic
images [31–38]. Horiuchi et al [39] used a GoogleNet-based transfer learning method to classify
EGC and gastritis in gastric ME-NBI images with an accuracy of 85.3%. Liu et al [40] used
a deep learning model to classify chronic gastritis (CG), LGIN, and EGC on gastric ME-NBI
images with the recall of 92.0%, 92.0%, and 99.0%, respectively. Cho et al [41] developed
an intelligent system based on three deep-learning models to automatically detect EGC and
precancerous lesions in gastric WLI images with an average accuracy of 76.4%. Lui et al [42]
used deep learning models to classify LGIN, HGIN, and cancer in gastric NBI images with an
accuracy of 91.0%. Although these research groups realized the automatic detection of gastric
lesions based on deep learning, there were no studies on intelligent recognition of various lesions
covering the formation stage of gastric cancer (gastritis, IM, LGIN, HGIN, EGC) based on
ME-NBI images. Moreover, the classification performance of precancerous lesions in existing
studies needs to be improved. In addition, these methods were all based on transfer learning
models, which may lead to overfitting, gradient disappearance, and even gradient explosion in
the case of insufficient data.

The role of attention mechanisms in improving the performance of deep learning models
has been demonstrated [43,44] and successfully applied in medical image analysis [45,46].
Feature fusion fuses multiple features with different properties into a new feature to obtain
discrepancy information from the original feature, which can effectively improve the model’s
performance [47,48]. Inspired by F. Wang et al [44] and Dai et al [48], we proposed an efficient
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attention-mechanism feature fusion deep learning model. We used two trunk branches to obtain
multiple semantic feature maps by using convolution units (based on separable convolution
layers [49] or Inception units [50]) with convolution kernels of different sizes in different trunk
branches. We fused these feature maps to get a new feature map, which was used as the input of
the attention module. The attention branch of the attention module used an encoding-decoding
structure to encode and decode the input feature fusion map multiple times and performed
multi-scale feature fusion via skip connections to produce an image with stronger semantic
information. We soft-weight the output of the attention branch to the output of the two trunk
branches to guide the model for attention feature learning. To reduce the number of model
parameters and computational complexity, we replaced the standard convolution kernel in the
separable convolution layer with the dilated convolution kernel [51]. To solve the problem of
class imbalance in the dataset, we introduced cost-sensitive learning into the model and weighted
the loss function by cost penalty weight to improve the performance of feature learning. The
main contributions of this paper are as follows:

(1) This paper proposed a deep-learning model of attention-mechanism feature fusion. As far
as we know, this is the first time that the attention mechanism and feature fusion technology
have been introduced into the automatic classification of gastric ME-NBI lesion images.

(2) A classification method based on the proposed model was developed to classify three
major categories of gastric diseases (five subtypes of lesions covering the stage of gastric
cancer formation). Under the condition that the number of model parameters (only 14
M) was close to half of the best-performing advanced gastric lesion classification model,
our method achieved the highest overall accuracy, sensitivity, and specificity and the
state-of-the-art classification performance for LGIN.

2. Methods

2.1. Image acquisition and labeling

The ME-NBI images for this study were retrospectively collected from patients who attended the
Department of Gastroenterology at Peking Union Medical College Hospital from March 2014 to
July 2021. The images were acquired using a GIF-H260Z endoscope (Olympus Medical Systems,
Tokyo, Japan) and an EVIS LUCERA CV-290 endoscope system (Olympus Medical Systems)
and saved at two resolutions of 1920× 1080 pixels and 1440× 1080 pixels as Joint Photographic
Experts Group (JPEG) format image files. The study was approved by the Institutional Review
Board of Peking Union Medical College Hospital, Beijing, China. And as a retrospective study,
informed consent from patients was not required for this study. Images with poor quality due to
defocus, mucus, under-inflation, and image blur were excluded from the study. Images lacking
the pathological diagnosis were also excluded. The remaining images were included in the study.
Black borders and text information containing patient privacy were removed from all images.
The collected images covered five categories of gastritis, IM, LGIN, HGIN, and EGC. Since there
is no universally accepted definition to distinguish intraepithelial neoplasia or cancer, and it is
almost impossible to accurately differentiate between HGIN and EGC in actual clinical practice,
HGIN can be classified into the EGC category [17, cho]. The five types of lesions are divided
into three categories: EGC(including EGC and HGIN), LGIN, and non-neoplasm (including
gastritis and IM). 4455 ME-NBI gastroscopy images from 1188 patients were finally collected,
including 392 EGC images from 116 patients, 1351 LGIN images from 410 patients, and 2712
non-neoplasm images from 662 patients.

Two pathologists from Peking Union Medical College Hospital performed the pathological
diagnosis, and patients with histologically confirmed EGC, LGIN, and non-neoplasm were
included in this study. The pathological diagnosis of EGC was based on the tissue removed by
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endoscopic submucosal dissection or surgical excision. The pathological diagnosis of LGIN was
made partly based on excised tissue and partly based on biopsy tissue. The pathological diagnosis
of non-neoplasm was made based on biopsy tissue. Two endoscopists (with more than seven years
of gastroscopy experience) from the Department of Gastroenterology of Peking Union Medical
College Hospital classified the ME-NBI images. They first excluded the endoscopic images
that did not match the pathological anatomical location in the pathology report to ensure that
the captured location of the images included in the study was consistent with the endoscopists’
suspected presence of an abnormal biopsy location or surgical location; after that, they classified
the remaining images into three categories: EGC, LGIN, and non-neoplasm, in conjunction with
the pathological diagnosis. The third endoscopist, who had more than ten years of experience in
gastroscopy, examined the images on which the first two endoscopists disagreed and determined
the final image category.

2.2. Dataset creation

The dataset was divided into training and test datasets. We selected 881 patients and obtained 3827
images for the training dataset, including 324 EGC images from 77 patients, 1151 LGIN images
from 302 patients, and 2352 non-neoplasm images from 502 patients. We fit and optimized the
model’s parameters by 5-fold cross-validation on the training dataset. The dataset was divided
into five groups with a patient-based random sampling method, and images from one patient
were assigned to only one group. If a patient had different categories of lesions simultaneously,
images of different categories of lesions from that patient might appear in other groups. Since
the number of images of some lesions (e.g., EGC) in the training dataset was very small, to
avoid overfitting the model, we increased the sample of the training dataset by image rotation
transformation (±20°), flip transformation (vertical and horizontal), and other methods that did
not affect the lesion characteristics of the images.

The remaining 628 images from 307 patients were used as the test dataset to evaluate the
model’s performance, including 68 EGC images from 39 patients, 200 LGIN images from 108
patients, and 360 non-neoplasm images from 160 patients. The overall median age of patients
was 60 years, the range of 24-89, and the gender ratio between males and females was 189/118.
To ensure the prospective nature of the test dataset, the endoscopy dates of patients in the test
dataset (January 2021-July 2021) were not crossed with the examination dates of patients in the
training dataset (February 2014-June 2020). Statistics for the training and test datasets are shown
in Table 1.

Table 1. Demography of the gastric lesions dataset used in this studya

Training dataset Test dataset

No. of
images

No. of
patients

No. of
images

No. of
patients

Median age
(range)

Sex (M/F)

EGC 324 77 68 39 69 (36-87) 26/13

LGIN 1151 302 200 108 59 (32-89) 70/38

Non-
neoplasm

2352 502 360 160 51 (24-75) 93/67

Overall 3827 881 628 307 60 (24-89) 189/118

aEGC: early gastric cancer; LGIN: low-grade intraepithelial neoplasia; M: male; F: female

2.3. Attention-mechanism feature fusion model for lesions classification

Clinically, endoscopists usually diagnose gastric lesions based on the morphological features of
different gastric mucosal lesions. Inspired by the diagnostic process of endoscopists, we proposed
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the attention-mechanism feature fusion convolution neural network(CNN) model (Fig. 1 (a))
for gastric ME-NBI image classification. We designed both the Xception-Attention-Feature-
Fusion-Block(Xception-AFFB) and Inception-Attention-Feature-Fusion-Block (Inception-AFFB)
attention feature fusion blocks as the main components of the model.

Fig. 1. Classification model architecture of gastric lesions and the proposed attention
feature fusion blocks and convolution units. (a) Schematics of the proposed attention-
mechanism feature fusion CNN model(Our). (b) The proposed Xception-Attention-Feature-
Fusion-Block(Xception-AFFB). (c) The proposed Inception-Attention-Feature-Fusion-Block
(Inception-AFFB). (d) Schematics of the convolution unit 1, 2(Conv Unit 1, 2).

Figure 1 (b) and (c) show the overview of the two blocks, both Xception-AFFB (Fig. 1 (b))
and Inception-AFFB (Fig. 1 (c)) consist of two parts: the multi-semantic feature fusion structure
(Fig. 1 (b) and (c) above the horizontal black dashed line) and the attention module (Fig. 1 (b)
and (c) below the horizontal black dashed line). Inspired by Dai et al. [48], our multi-semantic
feature fusion structure consisted of two trunk branches, which were used to generate two feature
maps with different semantic information. One branch (Trunk 1) generated low-semantic feature
maps through convolution units with smaller convolution kernels, and the other branch (Trunk 2)
generated high-semantic feature maps through convolution units with larger convolution kernels.
We concatenated and fused the two semantic feature maps to generate a new feature map and
fed it into the attention module. We used an encoding and decoding structure in the attention
module’s attention branch (Branch 3). The encoding structure consisted of multiple pooling
layers and convolution units to generate low-resolution feature images with strong semantic
information. The decoding structure consisted of multiple upsampling layers and convolution
units to map low-resolution feature images to their original size and perform pixel-by-pixel
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classification. The skip connections were inserted in the encoding and decoding structure to
connect lower-level detail features and higher-level semantic features to help the network obtain
high-resolution feature images with high-level semantics. After the decoding structure, we
used a 1× 1 convolution layer (1× 1 Conv) to achieve cross-channel information interaction,
and we added a rectified linear unit(RELU) activation function after this convolution layer to
enhance the learnable feature variation space. Finally, a sigmoid function was used to achieve a
mixed attention constraint on channel and space. The feature maps output from Branch 3 was
multiplied with the lower semantic feature maps output from Trunk 1 and then added with the
higher semantic feature maps output from Trunk 2 to add soft weights to the trunk branches’
feature maps of the network to achieve the intention of guiding the model feature learning.

In Xception-AFFB, Trunks1, 2, and Branch 3 each contained three convolution units 1 (Conv
Unit 1, as shown in Fig. 1 (d)). The convolution layer in Conv Unit 1 was derived from the
depth-separable convolution layer in Xception [49] network. The depth-separable convolution
layer can effectively use the parameters without increasing the model’s capacity and improve
the model’s performance. Therefore, we introduced the depth-separable convolution layer into
Conv Unit 1; however, to reduce the number of model parameters, we replaced the standard
convolution kernel in the depth-separable convolution layer with the dilated convolution kernel.
The dilated convolution kernel allows the convolution kernel to increase the receptive field
and feature representation capability without increasing the parameters by setting the dilated
rate [49]. For example, the receptive field of a dilated convolution kernel of size 2× 2 with a
dilated rate of 2 is equivalent to the receptive field of a 3× 3 standard convolution kernel, but
the former takes up only four parameters, and the latter takes up nine parameters. We named
the depth-separable convolution layer that replaced the standard convolution kernel as Dilated
DepthSeparableConv layer and added the RELU activation function before each convolution layer
and batch normalization after the convolution layer. We stacked three such convolution layers to
form Conv Unit 1. We used the dilated convolution kernel of size 2× 2 with a dilated rate of 2
(equivalent to the receptive field of a standard convolution kernel of size 3× 3) in Conv Unit 1
of Trunk 1 and the dilated convolution kernel of size 3× 3 with a dilated rate of 2 (equivalent
to the receptive field of a standard convolution kernel of size 5× 5) in Conv Unit 1 of Trunk 2.
Compared with Conv Unit 1 in Trunk 1, the convolution kernel in Conv Unit 1 in Trunk 2 has a
larger receptive field and can acquire feature maps with more global features and higher semantic
levels. Since the output of Branch 3 was multiplied and weighted with the output of Trunk 1, we
used the same size convolution kernel in Conv Unit 1 of Branch 3 as in Conv Unit 1 of Trunk 1.

In Inception-AFFB, Trunks 1, 2, and Branch 3 each contained three convolution units 2 (Conv
Unit 2, as shown in Fig. 1 (d)), which used the Inception block of Inception-ResNet V2 [50].
Inception block achieves multi-level feature fusion through multi-branch parallel structure; at the
same time, it factorizes a convolution layer with n× n convolution kernel size into two convolution
layers with 1×n (1×n Conv) and n× 1 (n× 1 Conv) convolution kernel size, reduces the number
of parameters from (n× n) to (1×n+ n× 1), and extends the model depth. The application of
these techniques allows Inception blocks to achieve better performance with lower computational
costs. Like Trunks1 and 2 in Conv Unit 1, we used convolution kernels with n= 3 and n= 5 in
Conv Unit 2’s Trunks1 and 2, respectively, to generate multi-semantic feature maps; and used the
same size convolution kernels in Branch 3’s Conv Unit 2 as in Trunk 1’s Conv Unit 2.

The proposed attention-mechanism feature fusion convolution neural network model (Our)
architecture is shown in Fig. 1 (a). We stacked multiple attention feature fusion blocks to
gradually refine the attention to the trunk feature map with incremental features. Specifically,
the model contained three Dilated DepthSeparableConv layers at the head and tail feature
extraction positions; one Xception-AFFB at the low and middle feature extraction positions,
respectively; one Inception-AFFB at the high feature extraction position; and two Conv Unit
2 at the top feature extraction position which the convolution kernels with n= 3 because of
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the small feature map size at this position. In addition, we used the reduced-dimensional
unit(as shown in Fig. 1 (e)) as the transition structure between the attention feature fusion
blocks, which consisted of two Dilated DepthSeparableConv layers (with 2× 2 convolution
kernel size and dilated rate of 2) and one Maxpooling layer. Our reduced-dimension unit can
effectively balance the feature map’s maximum pooling operation and feature representation
bottleneck and save the occupied parameters. We used a global average pooling layer, a fully
connected layer, and a Softmax loss function to form the classifier of the model, which outputs
the probability values of the input images belonging to the three gastric lesions. In addition,
We replaced all the attention feature fusion blocks in Fig. 1 (a) with Xception-AFFB to obtain
Xception-AFFCNN and replaced all the attention feature fusion blocks in Fig. 1 (a) with
Inception-AFFB to obtain Inception-AFFCNN. We evaluated the classification performance
of the proposed models(Xception-AFFCNN, Inception-AFFCNN, and Our) on gastric lesions
datasets and compared them with the benchmark models.

2.4. Class imbalance handling method

Deep learning-based medical image analysis tasks usually suffer from the dataset class imbalance
problem, i.e., one class contains significantly more samples than the other classes, and our dataset
suffers from this problem. For example, we have 2712 non-neoplasm images, but the number
of images for LGIN and EGC is only 1351 and 392, respectively. Class imbalance can make
the model feature learning highly biased towards the majority class and affect the accuracy of
classification results. Cost-sensitive learning [52] is a common approach to solving this problem,
which usually minimizes the cost and loss function value of misclassification by using a smaller
penalty term for the majority class and a larger penalty term for the minority class, thus rebalance
the classes. Therefore, we introduced cost-sensitive learning into the model’s loss function
to address the dataset class imbalance problem. We designed penalty weight values for each
category, as shown in Eq. (1):

Wj =
Ntotal

C · Nj
(1)

In the above equation, j represents the category (j= 1,2,3), Ntotal represents the total number of
samples, C represents the number of categories (C= 3), Nj represents the number of samples
in category j, Wj represents the penalty weight value of this category. Then we introduced the
weight value into the loss function to obtain the weighted loss function, which was calculated as
shown in Eq. (2):

Loss = −
1
N

N∑︂
i=1

C∑︂
j=1

Wj · Yij · log(Pij) (2)

In the above equation, N represents the number of batch samples, i represents the batch sample
order, Yij represents the true sample label, and Pij represents the predicted probability value. By
the above method, the model will consider the misclassification cost and adjust the loss values of
different classes to rebalance the classes during the training process.

2.5. Model training

We trained each model by 5-fold cross-validation on the training dataset. The training dataset
was divided into five groups at the patient level, and each model was cross-validated five times; in
each cross-validation, one different group was used for model validation, and the remaining four
groups were used for model training. The learning rate was 1E-4, batch size was 8, and Adam
was used as the optimizer. Since the model’s performance in the validation group was not further
improved, the number of training epochs was 150. All models used the same training parameters.
The average results of 5-fold cross-validation for each model were calculated on independent test
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dataset. All models were trained and tested on an AMD Ryzen 7-1700X eight-core processor
CPU(central processing units) and a GeForce GTX 1080 Ti GPU(graphics processing units).

2.6. Statistical analysis

The performance of each model was evaluated with per-category accuracy, sensitivity, specificity,
positive predictive value (PPV), and negative predictive value (NPV) with 95% confidence
intervals (CI). In addition, the receiver operating characteristic (ROC) curve was also used to
evaluate the comprehensive classification ability of the model. The area under the curve(AUC)
was automatically calculated based on the ROC curve, and the range was distributed between 0
and 1, higher values indicated better comprehensive classification performance of the model.
The calculation of each evaluation metric was shown in Eq. (3)-(7):

Accuracy =
TP + TN

TP + TN + FP + FN
, (3)

Sensitivity =
TP

TP + FN
, (4)

Specificity =
TN

TN + FP
, (5)

PPV =
TP

TP + FP
, (6)

NPV =
TN

TN + FN
, (7)

Where TP indicates True Positive, FP indicates False Positive, TN indicates True Negative, and
FN indicates False Negative. The overall accuracy (O-ACC), sensitivity (O-SE), specificity
(O-SP), PPV (O-PPV), NPV (O-NPV), and AUC (O-AUC) were obtained by summing and
averaging the same metric for all categories.

3. Results

3.1. Model evaluation on the gastric lesions dataset

In this section, we evaluated the performance of our model on the gastric test dataset. We
performed ablation studies and comparison experiments with other relevant state-of-the-art
methods, respectively. The overall accuracy (O-ACC), sensitivity (O-SE), specificity (O-SP),
PPV (O-PPV), NPV (O-NPV), and AUC (O-AUC) were used to evaluate the performances of
each method.

3.1.1. Ablation studies

We first conducted ablation studies to show the proposed model’s effectiveness. We compared
the classification performance of the benchmark models(Xception, Inception-ResNet V2) and the
proposed models(Xception-AFFCNN, Inception-AFFCNN, and Our) on the gastric test dataset.
To make a fair comparison, each model applies hyperparameters to achieve optimal performance;
the hyperparameters of Xception and Inception-ResNet V2 are the same (learning rate= 1E-4,
batch size= 8, and epochs= 100), and the proposed model uses the same hyperparameters
(learning rate= 1E-4, batch size= 8, and epochs= 150). The classification results are shown
in Table 2. In the multi-classification comparison of non-neoplasm, LGIN, and EGC, our
model(Our) obtained the optimal values (the bold fonts in Table 2) for O-ACC, O-SE, O-SP, O-
PPV, O-NPV, and O-AUC. The proposed Xception-AFFCNN achieved sub-optimal classification
performance. Compared with the benchmark model Xception, the Xception-AFFCNN achieved
performance gains on O-ACC, O-SE, O-SP, O-PPV, O-NPV, and O-AUC by 0.5%, 0.9%, 0.8%,
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0.5%, 0.4%, and 0.3%, respectively. The results showed that the proposed models(Xception-
AFFCNN, Our) based on attention feature fusion architecture effectively improve gastric lesions’
classification performance. Compared with the benchmark model Inception-ResNet V2, the
proposed Inception-AFFCNN did not significantly improve classification performance. We also
count the number of parameters of each model to indicate the complexity of the model. The
number of parameters for Our is 14 M, far less than Xception’s parameters and nearly a quarter
of Inception-ResNet V2’s parameters.

Table 2. Comparison of ablation studies on gastric lesions dataseta

Methods O-ACC O-SE O-SP O-PPV O-NPV O-AUC P(M)

Inception-Res
Net V2 [50]

93.7 85.1 93.7 91.9 95.1 98.0
55.9

(93.1, 94.3) (82.9,87.3) (92.9,94.5) (90.9, 92.9) (94.8,95.4) (97.7, 98.3)

Xception [49]
94.6 89.5 94.6 91.4 95.7 98.2

22
(93.9, 95.3) (88.5,90.5) (93.9,95.3) (89.7, 93.1) (94.9,96.5) (97.9, 98.5)

Inception- 92.7 88.4 93.2 88.7 94.6 98.1
13.3

AFFCNN (92.0, 93.4) (83.4,93.4) (91.5,94.9) (86.2, 89.6) (92.4,96.8) (97.9, 98.3)

Xception-
AFFCNN

95.1 90.4 95.4 91.9 96.1 98.5
16.2

(94.3, 95.9) (88.9,91.9) (94.9,96.6) (87.2, 98.8) (94.7,97.5) (98.2, 98.8)

Our
95.6 92.8 96.2 93.6 96.6 98.9

14.0
(94.6, 96.6) (89.7,95.9) (95.3,97.1) (92.1, 95.1) (95.3,97.9) (98.7, 99.1)

aO-ACC:overall accuracy; O-SE:overall sensitivity; O-SP:overall specificity; O-PPV:overall positive
apredictive value; O-NPV:overall negative predictive value; O-AUC:overall area under the curve;
aP: parameters; M: million.

The depth-separable convolution layer in Xception [49] is an extreme case of the convolution
layer in the Inception module [50]. The former has better performance gain [49]. This
phenomenon also exists in our experimental results (classification results of Xception and
Inception-ResNet V2 in Table 2). This is due to the efficient use of parameters in the depth-
separable convolution layer. In fact, the depth-separable convolution layer does not reduce the
number of parameters for Xception. On the contrary, at the same depth position of the network,
the number of parameters occupied by the depth-separable convolution layer is much higher
than that occupied by the convolution layer of the Inception module. Taking our designed
Inception-AFFB and Xception-AFFB as examples, the two blocks have the same structural
framework and number of convolution units. The difference is that Conv unit 2 of Inception-AFFB
contains four factorization convolution layers. However, Conv unit 1 of Xception-AFFB contains
three depth-separable convolution layers, less than the number of convolution layers in Conv unit
2 of Inception-AFFB. However, when the Inception-AFFB at the high-level feature extraction in
Fig. 1 (a) is replaced with Xception-AFFB (get our proposed Xception-AFFCNN), the model’s
parameters will increase by 2.2 M. It indicates that the number of parameters occupied by
Xception-AFFB at the same location of the model is much higher than that occupied by Inception-
AFFB. The results in Table 2 showed that the classification result of Inception-AFFCNN was not
the best, but it still maintained a good performance when the number of parameters was reduced
to 13.3 M. Therefore, based on the above analysis, we designed our model(Our), as shown in
Fig. 1 (a), to better balance the number of parameters and classification performance. We used
Xception-AFFB in the low-level and medium-level feature extraction positions to improve the
model’s performance and used Inception-AFFB with less parameter occupation to control the
model parameters in the high-level feature extraction positions. As seen from the results in
Table 2, our model (Our) had better classification performance than Xception-AFFCNN using
only Xception-AFFB and Inception-AFFCNN using only Inception-AFFB. The number of model
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parameters was also controlled (14.0 M vs. 16.2 M vs. 13.3 M). The results showed that
compared with the benchmark models (Xception, Inception-ResNet V2) and the model designed
by us (Xception-AFFCNN, Inception-AFFCNN), our model(Our) achieved higher classification
performance and achieved lightweight of the model. In the following research, we only analyze
our model(Our), and our method in the following paper refers to the classification method based
on our model(Our).

3.1.2. Comparisons with the state-of-the-art methods

Then, we compared the classification performance of our method with that of three other advanced
methods for classifying gastric lesions [34–35,40], including the classification method proposed
by Zhang et al [34] for chronic atrophic gastritis; the classification method proposed by Li et al
[35]. for EGC based on ME-NBI images; and the classification method designed by Liu et al
[40] for precancerous gastric lesions based on ME-NBI images. To ensure the best performance
of each method, the input image size of all methods was kept the same as the original network,
with the input image size of 299× 299 for Li et al.’s method, 224× 224 for Zhang et al.’s, Liu et
al.’s, and our method, and other training conditions were kept the same.

Table 3 summarizes the overall classification results for the three gastric lesions (non-neoplasm,
LGIN, and EGC) of the four methods in the gastric test dataset. As can be seen from Table 3,
our method achieved optimal values (values in bold) for O-ACC, O-SE, O-SP, O-PPV, O-NPV,
and O-AUC, and were 1.3%, 4.2%, 1.9%, 2.0%, 1.2%, and 0.8% higher than the sub-optimal
values, respectively. This indicated that our method outperformed the other three methods in
terms of overall classification performance. In terms of the number of parameters, the number of
parameters of our model was higher than that of Zhang et al.(14 M vs. 8.1 M) and much less
than that of Li et al.(23.9 M) and Liu et al.(26.0 M). Regarding the time complexity, the average
test time of our method was 0.73 ms per image, while the average test times of Zhang et al., Li
et al., and Liu et al. were 0.51 ms, 0.78 ms, and 0.89 ms per image, respectively. Although the
number of parameters and time complexity of our method was higher than those of Zhang et
al.’s method, the classification performance was significantly better than that of Zhang et al.,
with O-ACC, O-SE, O-SP, O-PPV, O-NPV, and O-AUC improving by 1.9%, 7.7%, 2.5%, 1.7%,
1.5%, and 0.9%, respectively. The comparison results showed that our method achieved a better
balance among classification performance, the number of parameters, and time complexity than
the other three advanced classification methods for gastric lesions.

Table 3. Comparison with other state-of-the-art methods on gastric lesions dataseta

Methods O-ACC O-SE O-SP O-PPV O-NPV O-AUC P(M)

Zhang Y, et al.
[34]

93.0 85.3 93.1 89.8 94.5 96.8
8.1

(92.2, 93.8) (83.4,87.2) (92.2,94.0) (87.7, 91.9) (93.7, 95.3) (96.5, 97.1)

Li, et al. [35]
94.3 88.6 94.3 91.6 95.4 98.1

23.9
(93.6, 95.0) (87.9,89.3) (93.6,95.0) (89.7, 93.5) (94.6, 96.2) (97.9, 98.3)

Liu, et al. [40]
94.0 86.1 94.2 90.9 95.3 97.7

26.0
(93.0, 95.0) (83.3,88.9) (93.1,95.3) (89.3, 92.5) (94.5, 96.1) (97.4, 98.0)

Our
95.6 92.8 96.2 93.6 96.6 98.9

14.0
(94.6, 96.6) (89.7,95.9) (95.3,97.1) (92.1, 95.1) (95.3,97.9) (98.7, 99.1)

aO-ACC:overall accuracy; O-SE:overall sensitivity; O-SP:overall specificity; O-PPV:overall positive
apredictive value; O-NPV:overall negative predictive value; O-AUC:overall area under the curve;
aP: parameters; M: million.

In addition, we also counted the per-category accuracy, sensitivity, specificity, PPV, NPV, and
AUC for each method on the test dataset(Table S1 in Supplement 1). The results showed that

https://doi.org/10.6084/m9.figshare.23607363


Research Article Vol. 14, No. 9 / 1 Sep 2023 / Biomedical Optics Express 4687

in the case of LGIN, our method achieved optimal values for accuracy, sensitivity, specificity,
PPV, NPV, and AUC. In the case of non-neoplasm detection, our method also achieved better
values for accuracy, specificity, PPV, NPV, and AUC than the corresponding metrics of other
methods, except for sensitivity. In the case of EGC, our method achieved optimal values for
accuracy, sensitivity, NPV, and AUC, while specificity and PPV were lower than the values of
other methods.

Figure 2 shows the confusion matrixes for each method on the gastric test dataset, which
provide a more visual representation of the correlation between the predicted and actual labels
and the distribution of the number of predicted labels for each method. We used the per-category
true positive(TP) rate to describe the confusion matrix results of each method. As can be seen
from Fig. 2, in the case of EGC, Zhang et al.’s method obtained the lowest TP rate of 0.78 (as
shown in Fig. 2 (a)); Li et al.’s method and Liu et al.’s method obtained the TP rate of 0.84 (as
shown in Fig. 2 (b)) and 0.81 (as shown in Fig. 2 (c)), respectively; our method achieved the
highest TP rate of 0.91(as shown in Fig. 2 (d)). 15% of EGC were misclassified as non-neoplasm
in Zhang et al.’s method, while only 4% of EGC were misclassified as non-neoplasm in our
method. In the case of non-neoplasm, Li et al.’s method achieved the highest TP rate of 0.99,
while Zhang et al.’s method had the lowest TP rate of 0.97; in these two methods, 1% and 3% of
non-neoplasm were misclassified as LGIN, respectively; while our method had a TP rate of 0.98
and 2% of non-neoplasm were misclassified as LGIN. In the case of LGIN, our method achieved
the highest TP rate of 0.92; Zhang et al.’s method had the lowest TP rate of 0.83. The results in
Fig. 2 showed that Our method had the highest TP rate for EGC and LGIN and was only 1%
lower than the highest TP rate for non-neoplasm (0.98 vs. 0.99). The comprehensive results
showed that our method was more suitable for detecting gastric lesions in ME-NBI images.

In addition, to further evaluate the comprehensive classification ability of each method, the
ROC curves of each method on EGC, LGIN and non-neoplasm were drawn, and AUC values
were obtained, as shown in Fig. 3. The AUC of our method for EGC, LGIN and non-neoplasm
were 0.998, 0.986 and 0.990, respectively, which were superior to those of other methods. The
results showed that our method showed better comprehensive classification performance for each
type of gastric lesion.

3.2. Model generalization ability on the UCSD dataset

To validate the generalization ability of our method on other datasets, we evaluated the classification
performance of our method on the publicly available retinal spectral-domain optical coherence
tomography (SD-OCT) dataset (UCSD, University of California San Diego) and compared it
with three other methods (Zhang et al [34], Li et al [35], and Liu et al [40]). Optical detection
imaging plays an important role in the clinic [53]. Like endoscopic imaging, SD-OCT uses light
to capture micron-resolution optical cross-sections of human tissues and assembles them into
three-dimensional volumetric images [54]. Due to its high resolution and real-time imaging, have
been widely used in various medical applications [55–56], especially in ophthalmic diagnosis.
The UCSD dataset provides 109,309 retinal SD-OCT 2D images in Tag Image File Format
(TIFF) format, containing diabetic macular edema (DME), choroidal neovascularization (CNV),
DRUSEN, and NORMAL. The image labels are strictly labeled by ophthalmologists and used as
the gold standard for the classification task. All images were divided into the training dataset and
the test dataset. The training dataset had 108,309 images, including 37,205 CNV images, 11,348
DME images, 8,616 DRUSEN images, and 51,140 NORMAL images; the test dataset had 1,000
images, with 250 images each for CNV, DME, DRUSEN, and NORMAL. We trained the models
of the four methods(Zhang et al [34], Li et al [35], Liu et al [40], and Our) on the training dataset
using a 10-fold cross-validation method. We divided the training dataset into ten groups and
performed ten times of cross-validation. In each cross-validation, a different group was used
as the validation group to supervise the optimization of model parameters, and the remaining
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                       (a) Zhang et al.[34]                                                               (b) Li et al.[35]

      

                        (c) Liu et al.[40]                                                                       (d) Our

Fig. 2. Confusion matrixes of the gastric lesions classification for four methods on test
dataset. (a) Results obtained by the method of Zhang et al [34]. (b) Results obtained by
the method of Li et al [35]. (c) Results obtained by the method of Liu et al [40]. (d)
Results obtained by our method. EGC: early gastric cancer; LGIN: low-grade intraepithelial
neoplasia.

Fig. 3. Per-category ROC curves and AUC comparison of the four methods on the test
dataset. ROC: receiver operating characteristic; AUC: area under the curve. EGC: early
gastric cancer; LGIN: low-grade intraepithelial neoplasia.
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nine groups were used as the training group to fit the model parameters. Adam was used as
the optimizer in training with an initial learning rate of 1E-4 and a batch size of 8. Since the
performance of the validation group was no longer improved, the number of training epochs was
50, and all models were trained with the same training parameters. All models’ average results
of 10-fold cross-validation were counted and compared on the independent test dataset.

Table 4 summarized the O-ACC, O-SE, O-SP, O-PPV, and O-NPV for each method on
the UCSD independent test dataset, and the bold font represented the optimal values. Our
method achieved the optimal O-ACC, O-SE, O-SP, O-PPV, and O-NPV values, and 0.5%, 1.0%,
0.3%, 0.7%, and 0.3% higher than the sub-optimal values, respectively. This indicated that
the overall classification performance of our method on retinal OCT images exceeded that of
other comparative methods. In addition, we also summarized the per-category classification
performance of each method for CNV, DME, DRUSEN, and NORMAL(Table S2 in Supplement
1). The accuracy of our method for CNV, DME, DRUSEN, and NORMAL all reached the
optimal value (as shown in bold font). Most of the other evaluation metrics also achieved the
optimal value. In terms of time complexity, the per-image prediction time of our method on the
UCSD independent test dataset was 0.66 ms, while the per-image prediction times of Zhang et
al.’s, Li et al.’s, and Liu et al.’s methods were 0.67 ms, 1.2 ms, and 0.88 ms, respectively. This
indicated that the time complexity of our method was lower than that of the other methods. The
results showed that our method outperformed other comparison methods regarding classification
performance and time complexity on the retinal OCT image dataset.

Table 4. Comparison with other state-of-the-art methods on the UCSD test
dataseta

Methods O-ACC O-SE O-SP O-PPV O-NPV

Zhang Y, et al.
[34]

97.1 94.1 98.0 94.7 98.1

(96.4, 97.8) (92.4, 95.8) (97.4, 98.6) (92.8, 96.6) (97.5, 98.7)

Li, et al. [35]
98.0 96.0 98.7 96.4 98.7

(97.3, 98.7) (94.4, 97.6) (98.1, 99.3) (95.0, 97.8) (98.3, 99.1)

Liu, et al. [40]
97.9 95.7 98.5 96.0 98.6

(97.2, 98.6) (94.1, 97.3) (97.9, 99.1) (94.6, 97.4) (98.2, 99.0)

Our
98.5 97.0 99.0 97.1 99.0

(98.1, 98.9) (96.4, 97.6) (98.9, 99.1) (96.5, 97.7) (98.9, 99.1)

aO-ACC:overall accuracy; O-SE:overall sensitivity; O-SP:overall specificity; O-PPV:overall
aPositiv predictive value.

In addition, we used the confusion matrixes to visualize the distribution of predicted labels
for each method on the UCSD test dataset, as shown in Fig. 4. As can be seen from Fig. 4, in
the CNV case, Zhang et al.’s method achieved a TP rate of 0.99 (as shown in Fig. 4 (a)); Li et
al.’s and Liu et al.’s methods achieved the highest TP rate, both reaching 1 (as shown in Fig. 4
(b), Fig. 4 (c), respectively); our method achieved a TP rate of 0.99 (as shown in Fig. 4 (d)),
which lower than the maximum TP rate. However, our method gained the highest TP rates for the
DME, DRUSEN, and NORMAL, respectively, and were 2%, 12%, and 1% higher than the lowest
values. The comprehensive results showed that our method had good generalization ability on
the retinal OCT image dataset.

3.3. Visualizing model decisions

To understand the diagnostic process of the model, we visualized the model’s decision process
using class activation mapping (CAM) to see whether the model’s diagnosis was based on key
clinical features. One case of EGC, LGIN, and non-neoplasm ME-NBI images with model

https://doi.org/10.6084/m9.figshare.23607363
https://doi.org/10.6084/m9.figshare.23607363
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                         (a) Zhang et al.[34]                                                                       (b) Li et al.[35]

                          (c) Liu et al.[40]                                                                               (d) Our

Fig. 4. Confusion matrixes of the retinal lesions images classification for four methods on
the UCSD test dataset. (a) Results obtained by the method of Zhang et al [34]. (b) Results
obtained by the method of Li et al [35]. (c) Results obtained by the method of Liu et al [40].
(d) Results obtained by our method. CNV: choroidal neovascularization; DME: diabetic
macular edema.

predictions consistent with the actual category was randomly selected from the gastric lesion test
dataset, respectively. Using the class activation heat map generated by the CAM visualized the
main regions of interest of the model to the image. The original ME-NBI images and the class
activation heat map are shown in Fig. 5.

In Fig. 5, the first row from left to right showed the original EGC, LGIN, and non-neoplasm
images, respectively. The yellow rectangular region in the image was the identification region of
lesions marked by experts; hallmarks of these diseased areas were visible (EGC with obvious
boundary line and irregular curved blood vessels, LGIN with epithelial atypia and mucosal
structural changes, non-neoplasm with intestinal epithelial cells). The second row showed the
class activation heat map corresponding to the original ME-NBI image in the first row. The
orange and red regions in the class activation heat map indicated the regions with the most
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Fig. 5. Visualize the model classification decision process using the class activation heat
map. The first line is the original image, and the yellow rectangular box areas are the lesion
regions annotated by the experts. The second line is the corresponding heat map, where the
orange-red area indicates a significant influence on the model decision, while the blue and
green regions indicate a limited effect on the model decision. EGC: early gastric cancer;
LGIN: low-grade intraepithelial neoplasia.

significant influence on the model’s decision, and the features of these regions were the main
basis for the model to make a classification decision. In contrast, the blue and green regions
in the class activation heat map indicated limited influence on the model’s decision. The class
activation heat map showed that our model could accurately identify the clinical features of
ME-NBI images of various gastric mucosal lesions and make a classification diagnosis, and the
diagnostic basis was consistent with that of the experts. The visualization results showed that our
model has good reliability.

4. Discussion

In this study, we proposed an attention-mechanism feature fusion deep learning model, based
on which we established an automatic classification method that can detect a wide range of
lesions covering the formation stage of gastric cancer from ME-NBI images. These lesions
were classified as non-neoplasm(including gastritis and IM), precancerous neoplasm (LGIN),
and EGC(including HGIN and EGC). As far as we know, this is the first time that the attention
mechanism and feature fusion technology have been introduced into the automatic detection of
gastric lesions.

The results showed that our method achieved the highest overall accuracy, sensitivity, specificity,
PPV, NPV, and AUC, outperformed the classification performance of the benchmark models and
other advanced methods, and outperformed the existing studies [41]. The detection accuracy
and sensitivity of LGIN were 94.5% and 93.0%, respectively, achieving the most advanced
classification performance.

Currently, the automatic classification methods of gastric lesions based on deep learning
mainly adopt transfer learning methods. Compared with these methods [34–35,40], our approach
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achieved the optimal overall classification performance on the gastric lesions test dataset. We
designed and built a lightweight model with only 14.0 M parameters. We used the depth-separable
convolution layer [49] as the basic convolution layer for the low and medium levels of the network
and replaced the standard convolution kernel with the dilated convolution kernel to reduce the
model parameters. Furthermore, we used the factorization convolution layer [50], a convolution
layer with relatively low parametric occupancy, as the basic convolution layer for the high levels
of the network. Compared with the methods of Li et al [35] and Liu et al [40] (with 23.9 M and
26.0 M parameters, respectively), our method’s number of model parameters was significantly
reduced, while the overall accuracy was improved by 1.3% and 1.6%, respectively. Our method’s
prediction time per image was 0.73 ms, which was lower than the time complexity of Li et al [35]
and Liu et al [40] (0.78 ms and 0.89 ms respectively). Our method was characterized by high
precision, lightweight, and real-time, demonstrating the extensive potential of intelligent clinical
diagnosis.

Compared with our previous method [57], instead of only obtaining a single feature map from
a single trunk branch and feeding it to the attention module, the new method used multiple trunk
branches to generate multiple semantic feature maps and the feature fusion map as input to the
attention module. In addition, we designed a new attention module. We used multiple encoding
and decoding layers in the attention branch and added the convolution units and skip-connection
to carry out more sufficient convolution operations on the input feature fusion map. Furthermore,
we weighted and fused the feature maps output by the attention branch to the feature maps with
different semantic information output by multiple trunk branches instead of only weighing the
output of a single trunk branch. Compared with our previous study [57], the proposed method
significantly improved the overall accuracy and the per-category accuracy of gastric lesions.

Despite these advantages, there are some limitations to this study. Firstly, the data used in our
study were from the same center, and the equipment, imaging settings, and image formats of
different centers may have some influence on the classification performance; therefore, in the
subsequent study, we will collect data from different centers and analyze them. Secondly, we
used high-quality images in this study instead of low-quality ones (such as blurred areas and weak
light). We will add more low-quality images in subsequent studies to enhance the robustness and
universality of our method for low-quality images. In addition, this study only included gastric
lesions; after collecting more patients and endoscopic images, we will include lesions such as
esophagitis and early esophageal cancer into our lesion classification system to increase their
clinical application.

5. Conclusion

This study proposes a gastric lesion classification method based on an attention-mechanism
feature fusion deep learning model. Compared with previous gastric lesion classification models,
our proposed model uses feature fusion techniques to enhance the recognition of ME-NBI image
features and combines attention mechanisms to focus the model on lesion regions with significant
features in the images. Our model achieves efficient classification with only 14 million parameters
and a good balance of accuracy, time complexity, and the number of parameters. The proposed
method is validated to outperform other state-of-the-art classification methods on both the gastric
lesion and the retinal OCT datasets.
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